$e^{x} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots + \frac{x^n}{n!} + \dots = \frac{x^n}{n!}$

- 1. Find the first 4 terms of the series
- Write the rule for the series
- Find the interval of convergence
 - 4. Take the derivative of the series
- 5. Take the antiderivative of the series

5)
$$f(x) = x^{2}e^{x^{3}}$$

$$\int_{A=0}^{\infty} x^{2} \frac{(x^{3})^{n}}{n!} \int_{A=0}^{\infty} \frac{x^{3n+2}}{n!} + x^{2} + x^{5} + \frac{x^{8}}{2} + x^{6}$$

$$\int_{A=0}^{\infty} \frac{x^{3n+2}}{n!} = \int_{A=0}^{\infty} \frac{(3n+2)x^{3n+1}}{(3n+3)n!} + C$$
6) $f(x) = xe^{x^{4}}$

$$\tan^{-1}(x) = \frac{\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{2n+1}}{\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{2n+1}} = x - \frac{x^3}{3} + \frac{x^5}{5}$$

- 1. Find the first 4 terms of the series
- 2. Write the rule for the series
- 3. Find the interval of convergence
 - 4. Take the derivative of the series
- 5. Take the antiderivative of the series

$$\frac{4}{4} = \frac{1}{2} \left(\frac{1}{2}\right)^{n} = \frac{1}{$$

8)
$$f(x) = \ln(1 - x^4)$$

1) Take 3 derivatives

2) Plug in the center 18) $f(x) = \frac{1}{x}$

Find the 3rd order Taylor Polynomial centered at x = 2

$$18) \ f(\mathbf{x}) = \frac{1}{\mathbf{x}}$$

3) Bull Polynomial
$$f'(c)(x-c)$$

$$f'(x) = x^{-1} = \frac{1}{x} \qquad f(x) = \frac{1}{x^2}$$

$$f'(x) = -x^{-2} = -\frac{1}{x^2} \qquad f'(x) = \frac{1}{x^2}$$

$$f''(x) = -x^{-2} = -\frac{1}{x^2} \qquad f''(x) = \frac{1}{x^2}$$

$$f''(x) = 2x^{-3} = \frac{2}{x^3} f''(2) = \frac{1}{8} = \frac{1}{4}$$

$$f''(c)(x-c)$$
where $c = center$

$$f''(x) = -x^{-2} = -\frac{1}{x^{2}} + \frac{1}{(2)^{2}} \frac{1}{16} = \frac{1}{16}$$

$$f'''(x) = -x^{-2} = -\frac{1}{x^{2}} + \frac{1}{(2)^{2}} \frac{1}{16} = \frac{1}{16}$$

$$f'''(x) = -6x^{-4} = -\frac{1}{16} \frac{1}{16} + \frac{1}{16} = -\frac{1}{16} \frac{1}{16}$$

$$f'''(x) = -6x^{-4} = -\frac{1}{16} \frac{1}{16} + \frac{1}{16} \frac{1}{16} = -\frac{1}{16} = -\frac{1}{16} \frac{1}{16} = -\frac{1}{16} \frac{1}{16} = -\frac{1}{16} \frac{1}{16} =$$

$$P_{3}(x-2) = \frac{1}{2}(x-2)^{3} - \frac{1}{4}(x-2)^{1} + \frac{1}{4}(x-2)^{2} - \frac{\frac{3}{8}(x-2)^{3}}{3!}$$

$$= \frac{1}{2} - \frac{1}{4}(x-2) + \frac{1}{8}(x-2)^{2} - \frac{1}{16}(x-2)^{3}$$

19)
$$f(x) = \sin x$$
 at $x = \frac{\pi}{4}$

$$f'(x) = \cos x$$
 $f'(\frac{\pi}{4}) = \frac{1}{2}$
 $f''(x) = -\sin x$ $f''(\frac{\pi}{4}) = -\frac{1}{2}$
 $f'''(x) = -\cos x$ $f'''(\frac{\pi}{4}) = -\frac{1}{2}$

$$P_3(x-\frac{\pi}{4}) = \frac{\sqrt{2}}{2} + \frac{\sqrt{2}(x-\frac{\pi}{4})}{2!} - \frac{\sqrt{2}(x-\frac{\pi}{4})}{2!} - \frac{\sqrt{2}(x-\frac{\pi}{4})}{3!}$$

$$\frac{\sqrt{2}(x-\pi)^2-\frac{\sqrt{2}}{12}(x-\pi)^3}{\frac{1}{4}}$$

2015 BC6

1. The Maclaurin series for a function f is given by $\sum_{n=1}^{\infty} \frac{(-3)^{n-1}}{n} x^n = x - \frac{3}{2} x^2 + 3x^3 - \dots + \frac{(-3)^{n-1}}{n} x^n \dots \text{ and converges to f(x) for }$

|x| < R, where R is the radius of convergence of the Maclaurin series.

a) Use the Ratio Test to find R

b) Write the first four non-zero terms of the Maclaurin series for f', the derivative of f. Express f' as a rational function for |x| < R.

c) Write the first four nonzero terms of the Maclaurin series for e^x. Use the Maclaurin series for e^x to write the third-degree polynomial for g(x) = e^xf(x) about x = 0.

CALCULUS: Graphical, Numerical, Algebraic by Finney, Demana, Watts and Kennedy Chapter 9: Review of Series

Let f b a function that has derivatives of all orders for all real numbers. Assume f(0) = 4, f''(0) = 5, f'''(0) = -8, and f''''(0) = 6.

- Write the third order Taylor Polynomial for f at x = 0 and use it to approximate f(.2).
- b. Write the second order Taylor polynomial for f', at x = 0
- c. Write the fourth order Taylor polynomial for $\int_0^x f(t)dt$, at x = 0.
- d. Determine if the linearization of f is an underestimate or overestimate near 0.

p. 527 57

a. Write the first three nonzero terms and the general term of the Taylor Series generated by $f(x) = 5\sin\left(\frac{x}{2}\right)$ at x = 0.

c. What is the minimum number of terms of the series in part a needed to approximate f(x) on the interval (-2, 2) with an error not exceeding .1 in magnitude. Explain your answer.

n	492	#24
100	714	172

The Maclaurin Series for f(x) is $f(x)=1+\frac{x}{2!}+\frac{x^2}{3!}+\frac{x^3}{4!}+\cdots+\frac{x^n}{(n+1)!}$.

a. Find f'(0) and $f^{(0)}(0)$.

b. Let g(x) = xf(x). Write the Maclaurin Series for g(x), showing the first three non-zero terms and the general term.

c. Write g(x) in terms of a familiar function without using series.

11344	enn	2.1-4	-
p.	500	#1	-

Find a formula for the truncation error if we use $P_6(x)$ to approximate $\frac{1}{1+2x}$ on (-.5, .5).

p. 500 20

a. If cos(x) is replaced by $1 - \frac{x^2}{2}$ and |x| < .5, what estimate can be made of the error?

b. Does $1 - \frac{x^2}{2}$ tend to be to large or to small.

p. 500 #22

The approximation $\sqrt{1+x} \approx 1 + \frac{x}{2}$ is used when x is small. Estimate the error when |x| < .1

p. 527 #60

Let
$$f(x) = \frac{1}{x-2}$$
 at $x = 3$.

a. Write the first 4 terms and the general term of the Taylor Series generated by f(x) at x = 3.

b. Use the result in part (a) to find the fourth order polynomial and the general term of the series generated by $\ln |x-2|$ at x=3.

- Use the series in part (b) to compute a number that differs from ln(1.5) by less than 0.05. Justify your answer.
- 83. The Taylor Series for lnx, centered at x = 1, is $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}(x-1)^n}{n}$. Let f be the function given by the sum of the first three nonzero terms of this series. The maximum value of $|\ln x f(x)|$ for $.3 \le x \le 1.7$ is
- (A) .030
- (B) .039
- (C) .145
- (D) .153
- (E) .529

2011 BC6

Let $f(x) = \sin(x^2) + \cos x$.

- a. Write the first four nonzero terms of the Taylor series for sinx about x = 0, and write the first four nonzero terms of the Taylor series for $sin(x^2)$ about x = 0.
- b. Write the first four nonzero terms of the Taylor series for $\cos x$ about x = 0. Use this series and the series for $\sin(x^2)$, found in part a, to write the first four nonzero terms of the Taylor series for f(x) about x = 0.
- c. Find the value of f⁽⁶⁾(0).

d. Let $f(x) = \sin(x^2) + \cos x$. The graph of $y = |f^{(5)}(x)|$ is shown.

Let P₄(x) be the fourth degree Taylor polynomial for f about x = 0. Using information from the graph of $y = |f^{(5)}(x)|$, shown above, show that

$$P_4\left(\frac{1}{4}\right) - f\left(\frac{1}{4}\right) < \frac{1}{3000}$$

_			
20	MA	TY	71
1 71	1114	150	

Let f be the function given by $f(x) = \sin\left(5x + \frac{\pi}{4}\right)$, and let P(x) be the third-degree Taylor polynomial for f about x = 0.

a) Find P(x).

b) Find the coefficient of x^{22} in the Taylor series about x = 0.

Use the Lagrange error bound to show that $\left| f\left(\frac{1}{10}\right) - P\left(\frac{1}{10}\right) \right| < \frac{1}{100}$.

d) Let G be the function given $G(x) = \int_0^x f(t)dt$. Write the third-degree Taylor polynomial for G about x = 0.

$f(x) = \sum_{n=0}^{\infty} c_n x^n$	INTERVAL OF CONVERGENCE	RADIUS OF CONVERGENCE
$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n = 1 + x + x^2 + x^3 + \cdots$	(-1, 1)	1
$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$	$(-\infty,\infty)$	∞
$\sin x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}$ $= x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots$	$(-\infty,\infty)$	∞
$\cos x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}$ $= 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots$	$(-\infty,\infty)$	∞
$\tan^{-1} x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1}$ $= x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \cdots$	(-1,1]	1
$\ln(1+x) = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^n}{n}$ $= x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \cdots$	(-1,1	1